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A Definition of Sequential and Counterfactual Equilibrium

We define the sequential and counterfactual equilibrium based on Caliendo et al. (2019) (henceforth,
CDP). Let’s define a change of any variable as ẋt =

xt
xt−1

and unjt = exp(V nj
t ).

Temporary equilibrium: Given (Lt, At, κt,K,Γ), where Γ is the vector of all parameters. A tem-
porary equilibrium in period t is defined as a vector of wages wt = w(Lt, At, κt,K,Γ) that solves
equations (8) to (13) in the main text.

Sequential equilibrium: Given an initial allocation (L0, {At, κt}∞t=0,K,Γ) a sequential competitive
equilibrium of the model is a vector of {Lt, µt, Vt, wt(Lt, At, κt,K,Γ)}∞t=0 that solves the dynamic
equations (4) to (6) and the temporary equilibrium.

We solve the sequential equilibrium using propositions 1 and 2 from CDP, incorporating land into
the model. These propositions state that given an initial allocation of the economy (L0,K0, π0, X0, µ−1)

and an anticipated sequence of changes in fundamentals {Ȧt, κ̇t}∞t=0, we can find the sequential com-
petitive equilibrium without knowing the level of fundamentals by solving the following system of
equations using the initial data on the labor mobility matrix and initial trade flows across locations
for each sector:

µnj,ik
t =

µnj,ik
t−1 (u̇ik

t+1)
β
ν∑J

r=1

∑N
m=1 µ

nj,rm
t−1 (u̇rm

t+1)
β
ν

(A.1)

u̇nj
t =

ẇnj
t

Ṗnj
t

(
J∑

r=1

N∑
m=1

µnj,rm
t−1 (u̇rm

t+1)
β
ν

)ν

(A.2)

Lnj
t+1 =

J∑
k=1

N∑
i=1

µnj,ik
t Lik

t (A.3)
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where ẇnj
t+1 and Ṗnj

t+1 solve the the temporary equilibrium at period t+1, which corresponds to the
following system of equations:

ẋnj
t+1 = (ẇnj

t+1)
ϕnjηnj

(ṙnt+1)
ϕnj(1−ηnj)

J∏
s=1

(
Ṗns
t+1

)ϕnj,ns

(A.4)

Ṗnj
t+1 =

(
N∑

m=1

πnj,mj
t (ẋmj

t+1κ̇
nj,mj
t+1 )−θj

(Ȧmj
t+1)

θj

)−1

θj

(A.5)

π̇nj,ij
t+1 =

(ẋij
t+1κ̇

nj,ij
t+1 )−θj

(Ȧij
t+1)

θj∑N
m=1 π

nj,mj
t (ẋmj

t+1κ̇
nj,mj
t+1 )−θj (Ȧmj

t+1)
θj

(A.6)

Xnj
t+1 =

J∑
s=1

N∑
i=1

ϕns,njπis,ns
t+1 Xis

t+1 + αnj

(
J∑

k=1

ẇnk
t+1L̇

nk
t+1w

nk
t Lnk

t + ṙnt+1r
n
t K

n

)
(A.7)

ẇnj
t+1L̇

nj
t+1 =

ϕnjηnj
∑N

i=1 π
ij,nj
t+1 Xij

t+1

wnj
t Lnj

t

(A.8)

ṙnt+1 =

J∑
j=1

(
1− ηnj

ηnj

)
ẇnj

t+1L̇
nj
t+1w

nj
t Lnj

t

rnt K
n

(A.9)

Counterfactual equilibrium: The last concept to define is the counterfactual equilibrium. As in
CDP, to compute counterfactuals, we assume that agents do not know the shock at t = 0, but
learn about the change in the path of fundamentals at t = 1. Let’s define ŷt+1 = ẏ′t+1/ẏt+1 as the
ratio of time changes between the counterfactual equilibrium and the initial baseline equilibrium
for any variable y, where ẏ′t+1 =

y′t+1

y′t
and y′t+1 corresponds to the level of y at time t+1 in the new

path. This means that if ŷt+1 ̸= 1, there is a change in variable y in the new equilibrium. Following
proposition 3 from CDP, we can solve for the counterfactual equilibrium without information on the
baseline fundamentals and using the initial sequential equilibrium by solving the following system
of equations:

µ
′nj,ik
t =

µ
′nj,ik
t−1 µ̇nj,ik

t (ûik
t+1)

β
ν∑J

r=1

∑N
m=1 µ

′nj,rm
t−1 µ̇nj,rm

t (ûrm
t+1)

β
ν

(A.10)

ûnj
t =

ŵnj
t

P̂nj
t

(
J∑

r=1

N∑
m=1

µ
′nj,rm
t−1 µ̇nj,rm

t (ûrm
t+1)

β
ν

)ν

(A.11)

L
′nj
t+1 =

J∑
k=1

N∑
i=1

µ
′nj,ik
t Lik

t (A.12)

for all j, n, i, and k; where {ŵnj
t+1}∞t=0 and {P̂nj

t+1}∞t=0 solve the temporary equilibrium at each period
t+ 1. In particular, they solve the following system of equations:

x̂nj
t+1 = (ŵnj

t+1)
ϕnjηnj

(r̂nt+1)
ϕnj(1−ηnj)

J∏
s=1

(
P̂ns
t+1

)ϕnj,ns

(A.13)
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P̂nj
t+1 =

(
N∑

m=1

π
′nj,mj
t π̇nj,mj

t+1 (x̂mj
t+1κ̂

nj,mj
t+1 )−θj

(Âmj
t+1)

θj

)−1

θj

(A.14)

π
′nj,ij
t+1 =

π
′nj,ij
t π̇nj,ij

t+1 (x̂ij
t+1κ̂

nj,ij
t+1 )−θj

(Âij
t+1)

θj∑N
m=1 π

′nj,mj
t π̇nj,mj

t+1 (x̂mj
t+1κ̂

nj,mj
t+1 )−θj (Âmj

t+1)
θj

(A.15)

X
′nj
t+1 =

J∑
s=1

N∑
i=1

ϕns,njπ
′is,ns
t+1 X

′is
t+1 + αnj

(
J∑

k=1

ŵnk
t+1L̂

nk
t+1ẇ

nk
t+1L̇

nk
t+1w

′nk
t L

′nk
t + r̂nt+1ṙ

n
t+1r

′n
t Kn

)
(A.16)

ŵnj
t+1L̂

nj
t+1 =

ϕnjηnj
∑N

i=1 π
′nj,ij
t+1 X

′ij
t+1

w
′nj
t L

′nj
t ẇnj

t+1L̇
nj
t+1

(A.17)

r̂nt+1 =

J∑
j=1

(
1− ηnj

ηnj

)
ŵnj

t+1L̂
nj
t+1ẇ

nj
t+1L̇

nj
t+1w

′nj
t L

′nj
t

r
′n
t ṙnt+1K

n
(A.18)

Then, we can use Proposition 3 from CDP to solve for the counterfactual equilibrium.

A.1 Algorithm

We model the Lake Chad shrinkage by solving the sequential equilibrium. We use the following
contraction mapping based on CDP and Rodriguez-Clare et al. (ming) to find the solution for the
economy. At t=0, agents know the evolution of the productivity path and trade costs. Let’s denote
(u̇njt )s as simulation s for the vector of utilities, (ẇnj

t )r as simulation r for the wage vector, and
(Ṗnj

t )v as simulation v for the price indices.

1. Start with an initial vector of utilities {(u̇njt )0}∞t=0.

2. Construct the new migration flows matrix using equation A.1 and the initial migration matrix.

3. Construct employment in each sector and location using equation A.3.

4. In an inner loop, solve for the temporary equilibrium given the path of productivity changes
Ȧnj

t+1 and the data from the previous period t:

• Start with an initial vector of wages (ẇnj
t+1)

0

• Solve for the change in the land rate given the change in wages and the data from period
t using equation A.9.

• In an inner loop, solve for the vector of price indices Ṗnj
t+1:

– Solve ẋt+1 using equation A.4

– Construct the change between t+ 1 and t for the price index using the trade shares
from the previous period and equation A.5. Denote this new price index as (Ṗnj

t+1)
′

– Update a new vector of price indices using some convergence parameter ζ and the
price index from simulation v:

(Ṗnj
t+1)

v+1 = ζ(Ṗnj
t+1)

′
+ (1− ζ)(Ṗnj

t+1)
v
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– Continue the algorithm until the difference between simulation v and v + 1 in the
price indices is lower than some tolerance factor tol.

• With the updated ẋt+1, construct the new trade shares using equation A.6.

• Solve for the expenditure in each sector and location in period t+1 using the data from
period t and equation A.7.

• Construct a new vector of wages (ẇnj
t+1)

′ using the trade shares and total expenditure
from period t+ 1, and equation A.8.

• Update a new vector of wages using some convergence parameter ν and the wages from
simulation r:

(ẇnj
t+1)

r+1 = ν(ẇnj
t+1)

′ + (1− ν)(ẇnj
t+1)

r

• Continue the algorithm until the difference between simulation r and r+1 is lower than
some tolerance factor tol.

5. Construct a new vector of utilities (u̇njt+1)
′ recursively using equation A.2.

6. Update a new vector of utilities for simulation s+ 1 with some convergence parameter ρ:

(u̇njt+1)
s+1 = ρ(u̇njt+1)

′
+ (1− ρ)(u̇njt+1)

s

7. Continue the algorithm until the difference in the change in utilities over time between simu-
lation s and s+ 1 is lower than some tolerance factor tol.

B Model inversion to recover initial trade flows

The model requires knowing initial trade flows to solve for the sequential and counterfactual equi-
librium. Unfortunately, such data is not available at the subdistrict level in Sub-Saharan Africa.
Hence, we follow Allen and Arkolakis (2025) and we recover trade flows in the initial period t = 0 by
inverting the model under the non-trade deficit condition. In particular, knowing the distribution
of trade costs (κnj,ij), total revenue in each sector and region (Y nj), total employment (Lnj), total
land (Kn), expenditure shares in the production function (βnj and ϕnj,nk), expenditure shares in
consumption across sectors (αnj), and the trade elasticity (θj), we can recover the productivity
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vector Anj in the initial period by solving the following system of equations.1

Xnj =
J∑

k=1

ϕnj,nk
N∑
i=1

(xnkκik,nk)−θk(Ank)θ
k∑N

m=1(x
mkκik,mk)−θk(Ank)θk

Xik

︸ ︷︷ ︸
Y nk: Gross production in the initial period nk

+αnj

(
J∑

k=1

wnkLnk + rnKn

)
︸ ︷︷ ︸

Final consumption with no deficits

, (B.1)

where

xnj = (wnj)ϕ
njηnj

(rnj)ϕ
nj(1−ηnj)

J∏
s=1

(Pns)ϕ
nj,ns

.

To construct the vector of wages and land prices, we use the total wage bill and land rents
divided by total employment and land in region n:

wnj =
ηnjϕnjY nj

Lnj
(B.2)

rn =
1

Kn

 J∑
j=1

(1− ηnj)ϕnjY nj

 . (B.3)

The system of equations B.1 has NJ equations and NJ unknowns, and we solve it following the
Alvarez and Lucas algorithm that is described in the next subsection.

After we recover the productivity vector Anj , we can construct trade flows within each sector
by solving:

πnj,ij =
(xijκnj,ij)−θj (Aij)θ

j∑N
m=1(x

mjκnj,mj)−θj (Amj)θj
(B.4)

We then use these initial trade flows to solve for the counterfactual and sequential equilibrium.

B.1 Algorithm

The algorithm works in the following way. Recall that we have data at the subdistrict and sector
level on: i) trade costs across locations; ii) total revenue in each sector and location, iii) total
employment and total land, and iv) expenditure shares in the production function.

1. We construct the expenditure shares in the consumption basket by assuming that all locations
in the four countries have the same expenditure shares:

αj =

∑N
n=1GDPnj∑J

k=1

∑N
n=1GDPnk

,

1We omit the time subindex since we do this only for the initial period in the cross-section.
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where GDPnj is the total revenue of location n and sector j without including the expenditure
in intermediate inputs.

2. Solve for the wage and land price using equations B.2 and B.3.

3. With data on total revenue Y nj , total wage bill wnjLnj , total land rents Knrn, and αj

construct the total expenditure of location n in sector j:

Xnj =
J∑

k=1

ϕnk,njY nj + αj

(
J∑

k=1

wnkLnk + rnKn

)

4. Assume an initial vector of productivity (Anj)0 and denote a simulation with the upper index
s. This means that the vector (Anj)s corresponds to the simulation s in the algorithm.

5. In an inner loop, solve for the price index in each location and sector given the vector (Anj)s,
wnj , and rn:

• Assume an initial vector of price indices (Pnj)0 and denote simulation r by (Pnj)r.

• Construct the variable xnj

(xnj)r = (wnj)ϕ
njηnj

(rnj)ϕ
nj(1−ηnj)

J∏
k=1

((Pnk)r)ϕ
nj,nk

.

• Construct a new price index for each location and sector (Pnj)′ based on the CES formula
of price indices and the distribution of iceberg trade costs:

(Pnj)′ =

(
N∑
i=1

((xij)r)−θj (κnj,ij)−θj ((Aij)s)θ
j

)−1

θj

• Update a new vector of price indices using the previous simulation:

(Pnj)r+1 = ν(Pnj)′ + (1− ν)(Pnj)r,

where the parameter ν corresponds to a convergence factor.

• Continue the algorithm until the minimum difference between simulation r and r + 1 of
price index Pnj is lower than some tolerance factor. That is: |(Pnj)r+1 − (Pnj)r| < tol

for all nj.

6. With the updated vector of price indices Pnj construct the variable xnj .

7. Construct a variable called (π̃ij,nj)s using the variables xij , Aij , and the trade costs, κij,nj :
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π̃ij,nj =
(xnj)−θj (κij,nj)−θj∑

m(xmj)−θj (κij,mj)−θj ((Am,j)s)θj

8. Construct a new vector of productivity (Anj)
′ using π̃ij,nj and the initial data Y nj :

(Anj)
′
=

(
Y nj∑N

i=1(π̃
ij,nj)s

) 1

θj

9. Update a new vector of productivity with some convergence factor ζ and the productivity
vector of simulation s:

(Anj)s+1 = ζ(Anj)
′
+ (1− ζ)(Anj)s

10. Continue the algorithm until the minimum difference between simulation s and s + 1 of
productivity Anj is lower than some tolerance factor. That is: |(Anj)s+1 − (Anj)s| < tol

for all nj.

C Existence and Uniqueness of the Equilibrium

In this section, we examine the conditions under which the steady-state equilibrium exists and is
unique, following Allen et al. (2024) and Kleinman et al. (2023). The model incorporates multiple
sectors, with agglomeration forces assumed to operate only in the urban sector. To avoid equilibrium
multiplicity in the simulations, we set the strength of agglomeration forces to a very small value.
Specifically, we choose a value of 0.05, ensuring that agglomeration effects remain weaker than
congestion forces.2 Nevertheless, in the full multi-sector model, it is difficult to derive general
conditions for uniqueness and existence, since the theorem of Allen et al. (2024) cannot be directly
applied to a dynamic model with multiple sectors. To address this limitation, in this section, we
restrict attention to a one-sector version of the economy, which allows us to establish conditions for
uniqueness in the presence of agglomeration forces in a particular location. Agglomeration forces
take the following form:

Ai
∗ = Ãi(Li

∗)
γ ,

where γ corresponds to the strength of the agglomeration force and Ãi to a scale productivity
parameter that in the steady state remains constant. Assuming time-invariant fundamentals:
{Ãi,Ki, κn,i, fn,i}, endogenous variables: {wi

∗, P
i
∗, v

i
∗, r

i
∗, l

i
∗} where xi∗ corresponds to the value for

variable x in the deterministic steady state equilibrium and a set of parameters {β, ν, ϕ, η, θ, γ}.
2To corroborate this very small value, we also simulate the shock from different initial points and make sure that

we always reach the same steady state equilibrium for the same shock in the model.
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Let’s define the following variables:

exp

(
β

ν
V i
∗

)
=

(
wi
∗

P i
∗

)
(vi∗)

β

f̃ i,n =
(
exp(f i,n)

)−1
ν .

Then, we have that the following system of equations must hold in steady state:

Price indices

(P i
∗)

−θ =
N∑

n=1

(κi,n(wn
∗ )

ϕ(Pn
∗ )

1−ϕ)−θ(Ãn)θ(Ln
∗ )

θ(γ−ϕ(1−η))(Kn)−θϕ(1−η) (C.1)

Labor market clearing condition

(wi
∗)

1+θϕ(Li
∗)

1−θ(γ−ϕ(1−η))(P i
∗)

θ(1−ϕ)(Ki)θϕ(1−η) = η

N∑
n=1

(
κn,i

Ãi

)−θ

(Pn
∗ )

θwn
∗L

n
∗ (C.2)

Labor mobility condition

(P i
∗)

β
ν (wi

∗)
−β
ν Li

∗(v
i
∗)

−β =
N∑

n=1

f̃n,iLn
∗ (v

n
∗ )

−1 (C.3)

Value function

vi∗ =
N∑

n=1

f̃ i,n(Pn
∗ )

−β
ν (wn

∗ )
β
ν (vn∗ )

β (C.4)

Then, we can apply the theorem from Allen et al. (2024) for the endogenous variables: {wi
∗, P

i
∗, L

i
∗, v

i
∗},

which states that a sufficient condition for the existence and uniqueness of a steady state equilibrium
is that the spectral radius of matrix A determined by the exponents in the system of equations C.1
to C.4 is less than or equal to one.

The following matrix can represent the exponents on the endogenous variables in the left-hand
side:

Λ =


0 −θ 0 0

1 + θϕ θ(1− ϕ) 1− θ(γ − ϕ(1− η)) 0
−β
ν

β
ν 1 −β

0 0 0 1

 ,

and on the right-hand side by:

Γ =


−θϕ −θ(1− ϕ) θ(γ − ϕ(1− η)) 0

1 θ 1 0

0 0 1 −1
β
ν

−β
ν 0 β


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Let A ≡ |ΓΛ−1| and denote the spectral radius as ρ(A). Following Theorem 1 from Allen et al.
(2024), a sufficient condition for existence and uniqueness is that ρ(A) ≤ 1. Notice that the system
will have exponents that will not be very strong agglomeration forces if γ ≤ 1

θ + ϕ(1 − η), which
is a condition that is satisfied in our simulations. It is difficult to solve the spectral radius of this
matrix in parametric terms.

Then, to provide the exact condition, we proceed as Kleinman et al. (2023), assuming symmetric
trade and migration costs across locations: f̃ i,n = f̃n,i and κn,iKi

Ãi
= κi,nKn

Ãn
. We can transform

equations C.3 and C.4 as follows:

From equation C.4, we get that:

1 =
N∑

n=1

f̃ i,n(ωn
∗ )

β
ν (vn∗ )

β

vi∗
(C.5)

where ωn
∗ = wn

∗
Pn
∗

. Then, we can rewrite equation C.3 as:

(ωi
∗)

−β
ν Li

∗(v
i
∗)

−β

(
N∑

n=1

f̃ i,n(ωn
∗ )

β
ν (vn∗ )

β

vi∗

)
=

N∑
n=1

f̃n,iLn
∗ (v

n
∗ )

−1 (C.6)

Rearranging terms
N∑

n=1

f̃ i,n(ωn
∗ )

β
ν (vn∗ )

β

vi∗
Li
∗ =

N∑
n=1

f̃n,i(ωi
∗)

β
ν (vi∗)

β

vn∗
Ln
∗ (C.7)

From the symmetric condition and also rearranging some variables, we get that:

N∑
n=1

f̃ i,n(ωn
∗ )

β
ν (vn∗ )

βL
i
∗

vi∗
=

N∑
n=1

f̃ i,nL
n
∗

vn∗
(ωi

∗)
β
ν (vi∗)

β (C.8)

Then, applying the Perron-Frobenius Theorem, we have that Li
∗

vi∗
= χ(ωi

∗)
β
ν (vi∗)

β for some constant
χ and w.l.o.g, we can assume χ = 1. Thus, we can use the following equation to reduce the system
by one endogenous variable:

Li
∗ = (ωi

∗)
β
ν (vi∗)

1+β (C.9)

We then can follow a similar approach for equations C.1 and C.2. Let’s define ς = γ − ϕ(1 − η)

From equation C.1 and using equation C.9, we get that:

1 =
N∑

n=1

(κi,n(wn
∗ )

ϕ(Pn
∗ )

1−ϕ)−θ(Ãn)θ((ωi
∗)

β
ν (vi∗)

1+β)θς(Kn)θϕ(1−η)(P i
∗)

θ (C.10)

Multiplying the L.H.S of equation C.2 by this term and rearranging some variables, we obtain:

N∑
n=1

(Kn)−θϕ(1−η)(κi,n(wn
∗ )

ϕ(Pn
∗ )

1−ϕ)−θ(Ãn)θ(Ln
∗ )

θς(P i
∗)

θwi
∗L

i
∗ (C.11)
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= η
N∑

n=1

(
κn,i

Ãi

)−θ

(Ki)−θϕ(1−η)(Pn
∗ )

θwn
∗L

n
∗ (P

i
∗)

−θ(1−ϕ)(wi
∗)

−θϕ(Li
∗)

θς (C.12)

Replacing wi
∗

P i
∗

in terms of ωi
∗, we get that:

N∑
n=1

(Kn)−θϕ(1−η)(κi,n(ωn
∗ )

ϕ(Pn
∗ ))

−θ(Ãn)θ(Ln
∗ )

θς(P i
∗)

1−θωi
∗L

i
∗ (C.13)

= η
N∑

n=1

(
κn,i

Ãi

)−θ

(Ki)−θϕ(1−η)(Pn
∗ )

1−θωn
∗L

n
∗ (P

i
∗)

−θ(ωi
∗)

−θϕ(Li
∗)

θς (C.14)

Since trade costs are symmetric, we can apply the Perron-Frobenius theorem again, we have that:

(P i
∗)

1−θω∗
i L

∗
i = ζ(P i

∗)
−θ(ωi

∗)
−θϕ(Li

∗)
θς

for some constant ζ that w.l.o.g we can assume ζ = 1. This implies that we can use the following
equation to solve for the price index:

P i
∗ = (ωi

∗)
−θϕ−1(Li

∗)
θς−1 (C.15)

Replacing the employment from equation C.9, we get that:

P i
∗ = (ωi

∗)
β
ν
(θς−1)−θϕ−1(vi∗)

(1+β)(θς−1) (C.16)

Then we get the following system of equations of two endogenous variables vi∗ and ωi
∗:

Value function equations:

v∗i =
N∑

n=1

f̃ i,n (ω∗
n)

β
ν (v∗n)

β, i = 1, . . . , N. (C.17)

Price index equations:

(ω∗
i )

θ

[
β
ν (1−θς)+θϕ+1

]
(v∗i )

(1+β)θ(1−θς) (C.18)

=

N∑
n=1

(κi,n)−θ (Ãn)θ (Kn)θϕ(1−η) (ω∗
n)

θ
{β
ν [ς(θ+1)−1]−(ϕ(θ+1)+1)

}
(v∗n)

(1+β)θ [ς(θ+1)−1]. (C.19)

Then, we can apply again Theorem 1 from Allen et al. (2024) to look for the conditions of existence
and uniqueness. In this case:

Λ =

 1 0

(1 + β)θ(1− θς) θ
[
β
ν (1− θς) + θϕ+ 1

]
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and

Γ =

[
β β

ν

(1 + β)θ [ς(θ + 1)− 1] θ
{β
ν [ς(θ + 1)− 1]− (ϕ(θ + 1) + 1)

}]

Then we have that A = |ΓΛ−1|, and we can try to look for the conditions such that ρ(A) ≤ 1.
Defining the following parameters:

ς ≡ γ − ϕ(1− η), ∆ ≡ 1− θς, Σ ≡ 1− (θ + 1)ς,

E ≡ β

ν
∆+ θϕ+ 1, D ≡ θE, R ≡ ϕ(θ + 1) + 1 +

β

ν
Σ,

the inverse of the exponent matrix is

Λ−1 =

 1 0

−(1 + β)∆

E

1

D

 ,

and the right-hand side matrix is

Γ =

 β
β

ν

(1 + β)θ[ς(θ + 1)− 1] θ
{β
ν
[ς(θ + 1)− 1]− (ϕ(θ + 1) + 1)

}
 .

Taking the product and the absolute value, we obtain

A ≡
∣∣ΓΛ−1

∣∣ =

∣∣∣∣β − β

ν

(1 + β)∆

E

∣∣∣∣ β/ν

θE

θ(1 + β)

∣∣∣∣R∆

E
− Σ

∣∣∣∣ R

E

 .

We then check that the spectral radius, ρ(A) ≤ 1, in our simulations.
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